
ADVANCES IN RETE PATTERN MATCHING 

Marshall 1. Schor, Timothy P. Daly, Ho Soo Lee, Beth R. Tibbitts 

IBM T. J. Watson Research Center 
P.O. Box 218, Yorktown Heights, NY 10598 USA 

Abstract 
A central algorithm in production systems is the pattern match among 
rule predicates and current data. Systems like OPS5 and its various 
derivatives use the RETE algorithm for this function. This paper de- 
scribes and analyses several augmentations of the basic RETE algo- 
rithm that are incorporated into an experimental production system, 
YES/OPS, which achieve significant improvement in efficiency and 
rule clarity. 

Introduction 
Rule based systems often spend a large fraction of their execution 
time matching rule patterns with data. The production system OPS5 
[FOR11 and many other systems (e.g. [ART11 [YAP11 [FOR3]), each 
use the OPS5 pattern match algorithm known as RETE. This paper 
describes four augmentations of the basic RETE algorithm that 
achieve much improved performance and rule clarity. As we describe 
each augmentation, we give an analysis of its effects, and some ex- 
amples of its use. These ideas are implemented in an experimental 
production system language, YES/OPS, running on LISP/VM in IBM 
Yorktown Research. 

We presume some familiarity with production systems, and the RETE 
algorithm. The reader is referred to the book, Programming Expert 
Systems in OPSS [BROl], and the AI Journal article on the RETE 
algorithm [FOR21 for background information. 

The first augmentation involves handling changes to existing data. In 
OPS5, three operations affect the data being matched with the rule 
patterns: make, which adds new data, remove, which removes data 
previously added, and modify, which modifies data previously 
added. However, modlf y is implemented in OPS5 as a remove of the 
previously existent data, followed by the creation of new data that is 
a copy of the previous data, except for the attributes that were 
changed. This new data is then added, which causes a new match 
cycle to occur. We change this to support modify as an update-in- 
place operation, and change how the rules are (re-)triggered, for 
greater clarity. 

The second augmentation allows the user to group rule patterns 
(called condition elements) together, in an arbitrary fashion. This 
enables specifying negated joins of patterns, not just individual con- 
dition elements, and plays an important role in specifying when to do 
maximize and minimize operations (which follows). The grouping can 
also be used to increase pattern match result sharing among the rules, 
for efficiency. 

The third augmentation supports the specification of sorted orderings 
among sets of data, in a much more efficient and syntactically clear 
manner. 

The final augmentation is the ability to do the pattern matching on 
demand, incrementally. This supports both the incremental addition 
of new rules, such that the new rule does match the existing data (not 
possible in OPS5), and the matching of particular patterns as part of 
an action done w-hen a rule fires, not when the data changes. This 
aspect eliminates the (OPS5) requirement that data to be manipulated 
in the action part of a rule must be matched by a condition element 
pattern in the rule’s tests (its Left Hand Side). This allows many 
practical rule sets to achieve orders of magnitude performance im- 

provement, by reducing the pattern matching part 
that part which needs to be data-change sensitive. 

of the rules to just 

All examples of rules are written using the YES/OPS syntax. This is 
similar to OPS5 syntax, except: 1) attributes are not preceded by an 
“f” character, but are followed instead by a colon “:‘I; 2) the rule 
form is: 
(P rule-name 
WHEN 

pattern matching specifications 
THEN 

actions to be done) 

MODIFY as update-in-place, new triggering conditions 
OPS5’s implementation of modify as a remove of the old value, and 
a re-make of it with the modified attributes causes excessive re- 
triggering of rules. Two commonly occurring instances of unwanted 
re-triggering are modification of attributes not tested in a rule and 
modification of an attribute to a value that still passes the same rule 
patterns as before. 

Example: Don’t-care slots re-triggering 

Suppose the user structures his working memory elements for a prob- 
lem involving genealogy research, as follows: 

Classname: PERSON 
Attributes: Name : Father: Mother: Gender: 

Native-language: Native-country: 
Language: Marital-status: Spouse : 

Now suppose some rules infer about ancestry, and other rules infer 
about languages spoken. If the ancestry rules have fired, and now, 
some new information about language causes the person’s lan- 
guage : attribute to be changed, in OPS5, the ancestry rules would 
fire again, even though they had taken all the actions appropriate for 
their matches to the existing data, and that data had not changed in 
the attributes of interest. 

The solution to this behavior in OPS5 is to separate attributes whose 
change should not re-trigger other rules, into different working mem- 
ory elements. This is often not the natural partition of the knowledge, 
and is less efficient, because the RETE must now do run-time joins 
of the split-apart attributes. 

Example: Tests true once, true again after modifying, re-triggering 

In OPS5, whenever a rule’s action part modifies a working memory 
element such that it still satisfies the rule’s tests, that rule loops. Users 
are told to “get around” this problem by coding extra control infor- 
mation in the working memory element and set flags that prevent 
looping. An example from the book Programming Expert Systems in 
OPS5 [BROl] is the problem of adding one to a set of items. The 
natural formulation (the one inexperienced users tend to write) looks 
like : 

(p add-l-to-items 
when 

(goal name: add-l-to-items) 
;the goal to do it 

<i> (item value: <v>) 
;an item, whose value is <v> 

then 
(modify <i> ;modify the item 

value: (<v> + 1) >) ;setting the value 
; to <v’ + 1 
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This works in YES/OPS, when modify is update-in-place, but loops 
in OPS5. The suggested rule formulation to get around this problem 
in OPS5 is to add an extra attribute to Item, called status, and set 
it from nil to marked when doing the adding. After adding to all the 
items, the goal is advanced to unmark, and another rule fires re- 
peatedly, once per item, to change the status attribute back to 
nil. This clearly is more rule firings, and also, more testing (the value 
of the status attribute must be tested). The example also is now 
cluttered up with control information, unrelated to the task of adding 
1 to a set of items, which makes these OPSS-style rules less readable: 

(p add-l-to-items 
when 

(goal name: add-l-to-items) 
;the goal to do it 

<i> (item value: <v> status: nil) 
then 

(modify <i> value: (compute <v> + 1) 
status: MARKED)) 

----------________--------------------------- 

(p change-task 
when 

;this rule fires after 
;prev. rule because it 

<g> (goal name: 
;tests fewer things 

add-l-to-items) 
then 

(modify <g> name: UNMARK)) 
-----______---------------------------------- 

(p unmark 
when 

(goal name: UNMARK) 
<i> (item status: MARKED) 

then 
(modify <i> status: NIL)) 

Having to code this kind of status information makes the rules less 
clear. Without implementing the new modify definition, the natural 
rule an expert often writes would need to be “fixed” to eliminate the 
unwanted triggering. The efficiency also suffers, in that the fixes re- 
quire more pattern matching tests. 

New modify definition remom re-tri&gering problems 
We define modify as an atomic update-in-place operation, rather 
than as a remove followed by a make of the modified working mem- 
ory element. The triggering rules are changed so that an existing 
instantiation that continues to exist after the modify, does NOT 
cause re-triggering. 

In addition to improving performance by eliminating extra control 
flags and their testing and maintenance, modify done as update-in- 
place reuses existing working memory data structure and RETE 
memory nodes. This improves the performance by reducing the ac- 
tivity involved with maintaining these structures. 

Triggering on any change 
The new modify semantics normally trigger a rule when a rule 
instantiation that was not previously present gets created. This means 
that a modify operation does not re-trigger a rule, if it does not result 
in a new instantiation. 

Sometimes, however, triggering on any change is desirable. An ex- 
ample might be a rule that counted how many times a person’s marital 
status changed. Here, we want the rule to re-trigger, no matter what 
the status changed to. To provide for this case, we extend the syntax 
to allow specifying re-triggering on any change of one or more se- 
lected attributes, by preceding the attribute name by an exclamation 
point (!). In addition, to specify re-triggering on the change of any 
attribute in the class, an exclamation point may be placed in front of 
the class name. This gives behavior like OPS5. For example: 

(p count-marital-status-changes 
when 

(person ! marital-stat:) 

cc> (counter type: 
*I retriggers on change 
Marital-stat-chg value: <v>> 

then 
(modify cc> value: (<v> + 1))) 

New algorithm for Modify in RETE Beta Join nod&s 
Tokens passed down the RETE have the operation ADD, REMOVE, 
or MODIFY associated with them (ADD corresponds to make). For 
modify operations, if at some point in the processing, the test result 
of the previous value of the modified working memory element differs 
from that of the current value, the modify operation is converted to 
a remove or add operation: 

CASE 1 CASE 2 
Previous value: tests fail tests OK 
Current value: tests OK tests fail 
New operation: ADD REMOVE 

When a token arrives at the bottom of the RETE, if the operation is 
add or remove, then the rule instantiation in the production node is 
either inserted to or removed from the conflict set, according to the 
operation; if the operation is modify, then nothing is done. This 
prevents re-triggering. 

For modify operations, specification of re-triggering attributes 
causes an exception. If one or more of the attributes was preceded 
by an “!” to indicate that re-triggering is wanted on any change of 
that attribute, the attributes so designated are compared with those 
that were modified; if one or more match, then the rule is reinserted 
into the conflict set even if it has already fired. 

Join nodes where left and right predecessors are identical 

Special case handling is required where the left and right inputs to a 
join node are identical. This arises in rules like: 

(p find-skilled-persons 
when 

(person name: <s> skill: <sl>) 
(person name: <n> needs-skilled-service: <sl>) 

then 
(say <s> can help <n> with service <sl>)) 

This yields the RETE structure: 

A problem can occur when a new working memory element is added 
which matches with itself; in this example, this could happen if the 
person needs the skilled-service which he himself has. The problem 
happens because the RETE algorithm sends the result of any changes 
in a node to all of its successors. In particular, a change token arriving 
at the previous node would be sent down both the right and left legs to 
the same Beta Join node. If no special consideration is taken, what 
can happen is that the change token on each path causes an 
instantiation to be added to the conflict set, resulting in double 
instantiations. 

OPS5 handles this case by first sending the token to all successors 
having left inputs, before updating the memory node by adding or re- 
moving (depending on the operation being done) the token to/from 
the memory. Thus, a change only sees itself on one leg (the right leg 
for add, the left leg for remove). 

Uncertainty and Expert Systems: AUTOMATED REASONING / 227 



With modify implemented as an update-in-place, the token in ques- 
tion is a/ready in the memory node. The new RETE code removes the 
particular element temporarily, before sending the modify operation 
to the left-successors. This prevents it from seeing itself during this 
phase. Then it puts it back into the list before sending it to the right 
successors. 

Running backwud 
Normal forward running of production systems repeats a cycle of 
matching rules with data, picking a rule to fire, and executing the 
picked rule’s actions, which may change the data being matched. A 
very useful debugging tool is the ability to run backwards, that is, re- 
store the state of the system to that which existed in previous cycles. 
OPS5 implements the back function for this; we have extended this 
function to handle modify as update-in-place. 

The utility of back requires that the user be able to make top-level 
changes as well; otherwise, when forward running resumes, the sys- 
tem would merely repeat what it had already done. Two kinds of 
changes are possible: changing data, and changing rules. 

In OPS5, incrementally added (or changed) rules do not match the 
existing data, which means that adding or changing rules dynamically 
is not practical. Extensions we have implemented for procedural 
matching support matching new or changed rules with existing data, 
making incremental rule editing a powerful debugging technique, us- 
able with back. 

Back requires that a history of changes to working memory and rule 
refractions (the firing of a rule instantiation) be kept during forward 
running. This history record is used to incrementally undo rule firing 
effects and restore the system to a previous state. Modify operations 
record the previous (unmodified) value, together with a pointer to the 
current working memory element in this history, so that the previous 
values can be restored when backing up. 

Generalization of OPSS validity test for reinserting refracted rules 

When a rule fires, a record is made; when backing up, that rule is re- 
inserted into the conflict set, re-enabling it to fire, unless something 
was done (at top level) that prevents it from being true anymore. In 
OPS5, the test done was to verify that all the working memory ele- 
ments, which matched positive condition elements of a rule being 
backed up, were still present. This test is inadequate in the general 
case. Consider the following example: 

(p back-bug ’ 
when 

(a) 
iT~i’“~~‘~e~~sPe~~~s~~t, 
;in order to fire. 

-(b) 
then 

( . . . . 1) 

Now suppose we do the following top level actions: 

1. (make a) ; this will insert the “back-bug” rule into the conflict 
set. 

2. (run 1) ; fires the rule, running forward 
3. (make b) ; add (b ) to the working memory 
4. (back 1) ; backs up 1 rule 

If step 3 had not been done at top level, we would expect to see the 
“back-bug” rule reinserted into the conflict set. However, because 
(b) now exists, that instantiation is no longer valid. 

YES/OPS verifies that a reinserted instantiation actually exists, be- 
fore reinserting it into the conflict set. To do this, we keep a RETE 
memory with each rule representing its current instantiations, given 
the current data in working memory. Before reinserting a rule when 
backing up, the instantiation is looked up in this memory. If it is 
present, then the rule instantiation is reinserted into the conflict set. 
If it is not present, then some top-level action changed working 

memory in such a manner to preclude this instantiation being true. In 
this case, the instantiation is not reinserted. 

Arbitrary grouping of pattern condition elements 
Rule condition element patterns of rules in OPS5 are grouped in a 
left-associative manner. For example, the joining of condition ele- 
ments of the rule 

(p rule1 when (a> (b) cc> (d) then . ..> 

results in a RETE join tree: 

Memory nodes at the bottom of 
the Alpha part of the RETE 

0 D 

d 3 RETE 
Beta 
Join 
Nodes 

+47 

Rule1 

We have augmented the basic RETE to allow arbitrary groupings, in 
addition to the default left-to-right linear associative grouping. 

Sharing pattern matching work among sewral rules 
Part of the RETE algorithm efficiency comes from sharing pattern 
matching tests which are identical among all the rules that have the 
tests. However, the OPS5 RETE shares results of join tests only if the 
patterns are the same starting from the first one. For example, con- 
sider the three rules: 

(p rule1 (p rule2 (p rule3 
when when when 
(a) (a) (cl 
(b) lb) Cd) 
(cl (f) (e) 
Id) 

then . . then . . then.. 

The join for (a) and (b) are shared between rule1 and rule2, but the 
join of ( c 1 and ( d) in rule1 and rule3 are not shared, because of the 
top-to-bottom associativity of the joins. 

By grouping as follows, one can get the benefits of shared tests: 
(p rule1 (p rule2 (p rule3 
when when when 
(a) (a) (cl 
(b) (b) (d) 
( (c) (f) (e) 
Cd) 1 

then . . then . . then.. 

The join part of the RETE would look like this: 

Memory nodes at the bottom of 
the Alpha part of the RETE 

T 
Rule2 

T 
Rule1 

T 
Rule3 

One of the major factors in the run-time performance in OPS5 is the 
number of beta nodes (two-input join nodes). That is due to the fact 
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that testing beta nodes involves time-consuming tasks proportional to 
the size of the memory nodes, e.g., checking bound variables for pos- 
sible join, evaluation of predicates, subsequent update of beta memo- 
ries, etc. Reducing the number of beta nodes, by sharing RETE 
structures, increases the run-time performance. 

Negating joined groupr 
One of the constructs supported by RETE is the negated condition 
element. Our grouping extension allows the negation of arbitrary 
combinations of condition elements. For example, a rule that verifies 
that no men and women pairs in a group share the same birthday: 

(p no-same-birthday 
when 

(goal type: check-shared-birthdays) 

-((person gender: male 
(person gender: 

birthday: <bd>) 
female birthday: <bd>)) 

then 
(say No man and woman share the same birthday)) 

The above rule could not have been expressed in OPS5 without cre- 
ating new working memory elements containing all the attributes to 
be negated, because the negated conditions have joins among them- 
selves, and the test is for whether or not the join result is empty. 

In OPS5, because only single condition elements could be negated, the 
knowledge programmer would have to rearrange the working memory 
data structures such that any test for non-existence would involve only 
single condition elements, never joins of multiple ones. Grouping 
gives the knowledge programmer the freedom to design working 
memory elements in a way that best suits the problem, without having 
to be concerned with support for negated conditions. 

Maximize/Minimize 
Many problems require sorting and selection of “best” or perhaps, 
“top two,” for example, finding the maximum, finding the best two 
financial alternatives, etc. The OPS5 technique for specifying these 
patterns is somewhat obscure: 

(p top-student 
when 

(student grade: <top> 
name: <name> > 

-(student grade: gt <top>) 
then . ..> 

This rule logically means “find a student having a grade <top> such 
that no other student has a grade which is greater than <top>". This 
is semantically equivalent to finding the student (or students in case 
of a tie) who have the best grades. 

We have augmented the syntax and RETE algorithm to support a 
clearer and more efficient expression of this kind. The same rule in 
the new syntax is: 

(p top-student 
when 

(student grade: maximize name : <name> > 
then . ..> 

The implementation is done by keeping the normal partial match 
memory nodes maintained during the RETE algorithm in sorted order, 
and adding a new kind of RETE node to do the selection of the max- 
imum, or top two or minimum, etc. 

Anulp& of sorting efficiency 
A simple binary tree search to insert a new element into a sorted list 
takes O(log n) comparisons, where n is the number of elements in the 
list. The average complexity to create a sorted list of n elements using 
the binary tree search, and pick the maximum is O(n log n). 

When n elements are added to the working memory in the OPS5 for- 
mulation, the RETE does O(n2) comparisons. The situation gets 
worse if the top two students are requested: The OPS5 formulation 
is: 

(p select-best-two 
when 

(student grade: <topl> name : <nl>) 
(student grade: <top2> & le <topl> 

name : <n2> & ne <nl>) 
-(&uden; grade: gt <top2> name: ne <nl>) 

9 . . 

The first two condition elements cause a join involving O(n*) com- 
parisons, and this is joined with the third (negated) condition element, 
yielding a complexity of O(n)). When the top k values are wanted, 
O(n**k+ 1) complexity ensues. 

Such shortcomings can be avoided by keeping memory nodes sorted, 
if rule patterns include sorting operators. Once memory nodes are 
sorted, selection of the top, or the top 2 or 3, etc., elements is fast. 

Sekction opemtom 
The syntax supports selection of both maximum and minimum sorting 
sequences, and the selection of the top “n” elements, assuming there 
are that many. For example: 

(person age: minimize select 2 to 4) 

selects persons whose ages, when ranked in ascending order, are the 
second, third, and fourth in the ranking. This selection ignores the 
fact that some of the items may have the same sort value. Alterna- 
tively, one may instead pick all items having the second thru fourth 
unique values, using the following variation: 

(person age: minimize select-values 2 to 4) 

Sort& owr arbitmty expresrions 
The sorts described so far sort on the value of one attribute of one 
working memory element. In general, the sort can be done on an ex- 
pression involving multiple attributes from multiple working memory 
elements. Consider the following example where prodigy-score 
is a Lisp function: 

(person age: <a> 
piano-skill-level: <p> 
& maximize (prodigy-score <a> <p>>) 

This would pick the top person by some combination of skill and early 
age. 

Placement of selection in the RETE 

The following examples illustrate the importance of placing the sorting 
and selection operators at the proper point in the RETE. Grouping 
of condition elements is required to achieve correct placement. Con- 
sider the following two rules: 

(p same-age-wonder-kids1 
when 

(person skill: piano-player age: <x>) 
minimize <x> 

(person skill: ice-skater age : <x>) 
then . ..> 

(p same-age-wonder-kids2 
when 
((person skill: piano-player age: <x>) 

(person skill: ice-skater age : cx>)) 
minimize <x> 

then . ..> 

These build the following RETE fragments: 
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same 
age v p-G&~1 

same 
age v 

Select 

i? 

Youngest 

The first case picks the youngest piano-player, who, let us suppose, is 
4 years old. If there are no ice-skaters who are 4 years old, then the 
join in the first case is empty, because the ages do not match. The 
second case first forms pairs of same-aged piano-players and ice- 
skaters, and then, from that set, picks the youngest. The grouping 
construct described earlier is required to give the correct meaning to 
the sorting constructs. 

Sorting owr subsets of 4 memofy node 
In many cases of picking the maximum, we want to find the maximum 
over subsets of a memory node. For example, suppose we wanted to 
know the oldest speaker of each language: 

OPS5 method: 

(p oldest-speaker 
when 

(person language: <I> age: <a>) 
-(person language: <l> age: gt <a>) 
then . ..> 

YES/OPS method: 

(p oldest-speaker 
when 

(person language: <l> 
age: FOR-UNIQUE <l> maximize) 

then . ..I 

Without the FOR-UNIQUE clause, the maximize would merely find 
the oldest person. Relational database query languages, for example, 
SQL [DATl], support this same notion of determining subsets over 
which to apply group operations, like maximum. The subset classi- 
fication is done on the basis of unique values for attributes, or for 
some expressions involving one or more attributes. 

Sorting extemions being conside& 
The select operation for sorted memory nodes can be extended to 
select the top half, etc. The goal is to eventually specify a fixed 
interface for selection to enable the user to use his own particular 
notion. 

Sorting is only one of many operations that can be done on subsets 
of a memory node. Other examples we are investigating are the 
common operations available from relational database, such as 
counting the number in the subset, computing the average, selecting 
the item closest to the mean, etc. The eventual goal is to provide the 

tools to allow the user to write his own group operations as needed to 
augment the ones supplied by the system. 

Procedural match augments data-driven match 
In OPS5, in order to reference any working memory attribute value, 
the working memory has to be matched by a condition element in the 
rule’s pattern. This invokes all the same RETE machinery that make 
the rule sensitive to changes in data matching that pattern. Often, this 
causes unwanted triggering, and is not the way the rule writer initially 
conceives of the knowledge. Consider the following example rule to 
print lists of language translators: 

(p translators1 

(goal type: print-translators) 
(language from: <from-lang> to: <to-lang>) 
(person translate-from: <from-lang> 

translate-to: <to-lang> 
name: <n>) 

then 
(say <t-r> can translate <from-language> 

to <to-language>)) 

Some of the characteristics of this knowledge representation for 
printing translators are: The goal working memory element can’t be 
removed by this rule when the task is completed; a “cleanup” rule 
must also be written that fires when all the instantiations of the 
translators 1 rule have fired, presumably by being less specific 
than this rule. To print “headings” for the list, another rule must be 
written that will fire before this one to print the headers. 

Allowing matching in the action part of a rule alleviates these prob- 
lems. The rule writer can choose whether to make a match be a trig- 
gering condition or not. The following example does a procedural 
match, iterating over all matches of the language-persons combina- 
tion. 

(p translators2 

<g> (goal type: print-translators) 
; This is the trigger condition 

; print heading once 
(say Source-language Target-language Person) 
(for-all-matches-of 

(language from: <from-lan 
(person translate-from: < 

g> to 
from- 

<to- 
anq> 

lang>) 

translate-to: <toylang>- 
name: <n>) 

,d?say <from-lang> <to-lang> <n>) 

iremove <g>)) ;one rule fires, goal removed 

The pattern matching work to find all languages and persons and 
compute their join is not done until the rule has fired. 

Impiementation of procedural matching 
A mini-RETE is created for the match expression. For efficiency 
reasons, the compilation of the mini-RETE is delayed until the first 
time the match is called for. This mini-RETE is then built in such a 
way as to reuse, wherever possible, partial matches already present in 
the main RETE. It is temporarily grafted onto the main RETE, and 
the partial matches present at the graft points form the starting point 
for computing the match. This section of the added RETE is “turned 
off” after the procedural match execution takes place, and only 
“turned on” again when the rule fires again. In this manner the pro- 
cedural matching isn’t done again until (and unless) the rule fires 
again. 

New rules matching existing working memory data 
In OPSS, if one compiles a large set of rules, then does many makes, 
then starts to run the production system and discovers a bug in one 
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of the rules, one is prohibited from simply fixing the rule and recom- 
piling it, since it would not match against existing working memory. 
The same problem pertains when writing a “debugging” rule in the 
middle of a run to try and determine the cause of some bug. The de- 
bugging rule doesn’t match existing working memory and is therefore 
not of much help at finding problems with existing data. 

The procedural matching ability in YES/OPS allows rules to be added 
after working memory has been defined, and these added rules match 
the existing working memory elements. For example, the following rule 
could be added after the production system had started running, to 
“catch” the rule that changes one spouse to be divorced but not the 
other one, assuming that it wasn’t obvious by inspection. 

(p catch-unfinished-divorces 
when 

(person name: <sl> marital-stat: divorced ) 
(person name: <s2> marital-stat: ne divorced 

spouse: <sl>) 
then priority 100 ;a high rule priority 

(say the culprit has been found!) 
(back 1) ;run back to the previous state 
(halt)) ;and stop 

Without having the rule match existing data, the knowledge of the 
spouse-spouse join would be missing, if it existed before the rule was 
added. The priority specification causes this rule to fire earlier 
than other rules in the conflict set, assuming we want to be notified 
of the condition as soon as it appears. 

Building new rules as a rule action 

An interesting consequence of this feature is that rules can be added, 
or existing rules changed, while running, by the action part of some 
other rule, and they will match existing data. This feature can be used 
in constructing self-modifying rule systems (a form of learning), al- 
though we have not yet experimented with this. 

Implementation of incremental rule addition 

The incremental rule addition handles its matching in a similar way to 
the procedural match discussed above. A mini-RETE is created for 
the new rule, sharing existing RETE structures if previously compiled 
rules contain matching patterns that can be reused by the new rule. 
This new RETE is then grafted onto the existing RETE; in this case, 
the new addition to the RETE is permanent; the new nodes are not 
“turned off” when the match is complete. Existing memory nodes at 
the points where the new mini-RETE is added are pushed down 
through the new part of RETE, thus matching the new rule’s patterns 
with existing working memory elements. 

Performance of YES/OPS 
Using YES/OPS, small projects done so far have exhibited orders of 
magnitude improvement in certain cases, even when the new exten- 
sions are minimally used. A subset of the rules of a large OPS5 system 
was converted to YES/OPS, without being rewritten to take advan- 
tage of the new mod if y technology. It ran approximately 20 CPU 
seconds in OPS5, but only 2 CPU seconds in YES/OPS. Further- 
more, a slight expansion of the problem (more working memory ele- 
ments) increased the OPS5 time by 30%, while the YES/OPS time 
increased only about 5 %. The performance comparison can be made 
arbitrarily good by increasing the size of the problem. 

The performance improvements come from five factors: The modify 
as update-in-place substantially reduces the flags that must be set and 
tested to control rule re-triggering. The grouping construct allows 
more sharing of pattern tests in the RETE. The sorted memory nodes 
trade algorithms of complexity O(n log n) for O(n ** k+ l), for the 
operations of selecting the best k elements from a set of alternatives, 
an often used function. The procedural matching, done on demand 
instead of included in the RETE match and updated at every change 
of the data, reduces the number of patterns that are active to just 
those that are required to trigger the actions. And, finally, the internal 

structure of the RETE representation and the algorithms were timed 
and tuned carefully. 

Summary 
These ideas have been implemented in an experimental production 
system language, YES/OPS [SCHl], built using LISP/VM [IBMl]. 
The guiding principles in the design of YES/OPS include 

0 the development of clean semantics, designed for data-driven 
production system applications, 

l full integration with the underlying procedural language(s) (e.g., 
LISP/VM), including communication with other languages and 
environments (for example, GDDM (Graphical Data Display 
Manager) and the XEDIT editor), 

l generality in rule expression, and 
0 efficiency of space and time, especially for large production sys- 

tems. 

Other features of YES/OPS include 

0 When-no-longer-true, which triggers actions when an 
instantiation, having once matched working memory, later ceases 
to match. This is useful for catching conditions that have no 
other explicit means to determine when they happen. 

a Rule priorities, which allow ordering of rules to fire, in addition 
to conflict resolution. Rule priorities can be numeric, or ex- 
pressions involving working memory attribute values in the 
instantiation being considered in conflict resolution. 

Some of these ideas have also been incorporated into another exper- 
imental production system language extension on top of PL/ 1, 
YES/L1 [MILl]. 

Many people at the IBM Yorktown Research Center participated in 
the discussions that evolved into these extensions. The ideas, support, 
and encouragement of Dr. Se June Hong are gratefully acknowledged. 
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